Improvements in automatic speech summarization and evaluation methods

نویسندگان

  • Chiori Hori
  • Sadaoki Furui
چکیده

This paper proposes an improved method of summarizing speech in which a con dence measure of a word hypothesis is incorporated in the summarization score and also proposes a new method for evaluating the summarized sentences. The automatically summarized sentences were evaluated based on the precision of extracted keywords and each word string with a certain length in the manual summarizations by human subjects. Japanese broadcast-news speech transcribed using a large-vocabulary continuousspeech recognition (LVCSR) system was summarized using our proposed method. Experimental results show that a con dence score giving a penalty for acoustically as well as linguistically unreliable hypotheses can reduce the meaning alteration of summarizations caused by recognition errors especially when the speech recognition rate is relatively low.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A survey on Automatic Text Summarization

Text summarization endeavors to produce a summary version of a text, while maintaining the original ideas. The textual content on the web, in particular, is growing at an exponential rate. The ability to decipher through such massive amount of data, in order to extract the useful information, is a major undertaking and requires an automatic mechanism to aid with the extant repository of informa...

متن کامل

Evaluation Methods for Automatic Speech Summarization

We have proposed an automatic speech summarization approach that extracts words from transcription results obtained by automatic speech recognition (ASR) systems. To numerically evaluate this approach, the automatic summarization results are compared with manual summarization generated by human subjects through word extraction. We have proposed three metrics, weighted word precision, word strin...

متن کامل

مقایسه روش‌های مختلف یادگیری ماشین در خلاصه‌سازی استخراجی گفتار به گفتار فارسی بدون استفاده از رونوشت

In this paper, extractive speech summarization using different machine learning algorithms was investigated. The task of Speech summarization deals with extracting important and salient segments from speech in order to access, search, extract and browse speech files easier and in a less costly manner. In this paper, a new method for speech summarization without using automatic speech recognitio...

متن کامل

Evaluation method for automatic speech summarization

We have proposed an automatic speech summarization approach that extracts words from transcription results obtained by automatic speech recognition (ASR) systems. To numerically evaluate this approach, the automatic summarization results are compared with manual summarization generated by humans through word extraction. We have proposed three metrics, weighted word precision, word strings preci...

متن کامل

Incorporating Speaker and Discourse Features into Speech Summarization

We have explored the usefulness of incorporating speech and discourse features in an automatic speech summarization system applied to meeting recordings from the ICSI Meetings corpus. By analyzing speaker activity, turn-taking and discourse cues, we hypothesize that such a system can outperform solely text-based methods inherited from the field of text summarization. The summarization methods a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000